Support Mathematics

Website Update

Eric Brussel

Eric Brussel

Professor

Email: ebrussel@calpoly.edu
Office Phone: 805-756-2381
Office: 25-300

 

 

 

Resume/CV

Education

University of California, Santa Cruz, Physics (B.A., 1982)
University of California, Santa Cruz, Education, (Certificate, 1986)
University of California, Los Angeles, Mathematics, (Ph.D., 1993)
Harvard University, University of Texas at Austin, Mathematics, (NSF Postdoctoral Fellow, 1993-1996)

Appointments

California Polytechnic State University, Professor, 2016-Present
California Polytechnic State University, Associate Professor, 2012-2016
Emory University, Associate Professor, 2002-2013
Emory University, Assistant Professor, 1997-2002
Harvard University, Benjamin Peirce Assistant Professor, 1993-1997

Research Interests

My research is centered on division algebras and the Brauer group, an area of algebra at the intersection of several disparate fields including number theory, algebraic geometry, Galois and etale cohomology, and Milnor K-theory.

About

Born in New York, raised in Illinois, college, post-college, and graduate school in California, post-doc in Boston and Austin, two kids in Atlanta, back to Cali for good. Interests: Math, music, philosophy, hiking, and biking.

Publications

List of All Publications

 

  • E. Brussel, Hasse invariant for the tame Brauer group of a higher local field.Trans.Amer. Math. Soc.(to appear), 26 pp.
  • E. Brussel, Noncyclic division algebras over fields of Brauer dimension one.Adv.Math.366 (2020), 10 pp.
  • E. Brussel, K. McKinnie, E. Tengan. Cyclic length in the tame Brauer group of thefunction field of ap-adic curve.Amer. J. Math.138 (2016) no. 2, 251–286.
  • E. Brusseland E. Tengan. Formal constructions in the Brauer group of the functionfield of ap-adic curve.Trans. Amer. Math. Soc.367 (2015) no. 5, 3299–3321.
  • E. Brusseland E. Tengan. Tame division algebras of prime period over function fieldsofp-adic curves.Israel J. Math., 201 (2014) no. 1, 361–371.
  • E. Brussel. Fixed points of thep-adicq-bracket.Proc. Amer. Math. Soc., 140 (2012)no.5, 1501–1511.
  • A. Asher,E. Brussel, R. Garibaldi, U. Vishne. Open problems on central simplealgebras.Transform. Groups, 16 (2011) no. 1, 219–264.
  • E. Brussel, K. McKinnie, E. Tengan. Indecomposable and noncrossed product divi-sion algebras over function fields of smoothp-adic curves.Adv. in Math., 226 (2011)no. 5, 4316–4337.
  • E. Brusseland E. Tengan. Bloch-Ogus sequence in degree two.Comm. Alg., 38(2010) no. 11, 4175–4187.
  • E. Brussel. On Saltman’sp-adic curves papers. InQuadratic forms, linear algebraicgroups, and cohomology, volume 18 ofDev. Math., pages 13–39. Springer, New York,2010.
  • E. Brussel. Alternating forms and the Brauer group of a geometric field.Trans.Amer. Math. Soc., 359 (2007) no. 7, 3025–3069.
  • E. Brussel. Non-crossed products over function fields.Manuscripta Math., 107 (2002)no. 3, 343–353.
  • E. Brussel. The division algebras and Brauer group of a strictly Henselian field.J.Algebra, 239 (2001) no. 1, 391–411
  • E. Brussel. Noncrossed products overkp(t).Trans. Amer. Math. Soc., 353 (2001)no. 5:2115–2129.
  • E. Brussel. An arithmetic obstruction to division algebra decomposability.Proc.Amer. Math. Soc., 128(8) (2000) 2281–2285.
  • E. Brussel. Division algebra subfields introduced by an indeterminate.J. Algebra,188 (1997) no. 1, 216–255.
  • E. Brussel. Noncrossed products overkp(t).Trans. Amer. Math. Soc., 353 (2001)no. 5:2115–2129.
  • E. Brussel. An arithmetic obstruction to division algebra decomposability.Proc.Amer. Math. Soc., 128(8) (2000) 2281–2285.
  • E. Brussel. Division algebra subfields introduced by an indeterminate.J. Algebra,188 (1997) no. 1, 216–255.
  • E. Brussel. Wang counterexamples lead to noncrossed products.Proc. Amer. Math.,Soc. 125 (1997) no. 8, 2199–2206.
  • E. Brussel. Decomposability and embeddability of discretely Henselian division alge-bras.Israel J. Math., 96 (1996) part A, 141–183.
  • E. Brussel. Division algebras not embeddable in crossed products.J. Algebra, 179(1996) no. 2, 631–655.
  • E. Brussel. Noncrossed products and nonabelian crossed products overQ(t)andQ((t)).Amer. J. Math., 117(2) (1995) 377–393
Class Materials

• 

Related Content

Support Learn by Doing

stock image. givenow.png

Support Learn by Doing