Eric Brussel
Resume/CV
Education
• University of California, Santa Cruz, Physics (B.A., 1982)
• University of California, Santa Cruz, Education, (Certificate, 1986)
• University of California, Los Angeles, Mathematics, (Ph.D., 1993)
• Harvard University, University of Texas at Austin, Mathematics, (NSF Postdoctoral Fellow, 1993-1996)
Appointments
• California Polytechnic State University, Professor, 2016-Present
• California Polytechnic State University, Associate Professor, 2012-2016
• Emory University, Associate Professor, 2002-2013
• Emory University, Assistant Professor, 1997-2002
• Harvard University, Benjamin Peirce Assistant Professor, 1993-1997
Research Interests
My research is centered on division algebras and the Brauer group, an area of algebra at the intersection of several disparate fields including number theory, algebraic geometry, Galois and etale cohomology, and Milnor K-theory.
About
Born in New York, raised in Illinois, college, post-college, and graduate school in California, post-doc in Boston and Austin, two kids in Atlanta, back to Cali for good. Interests: Math, music, philosophy, hiking, and biking.
Publications
• E. Brussel, Hasse invariant for the tame Brauer group of a higher local field, Trans. Amer. Math. Soc. (to appear), 29pp.
• E. Brussel, Noncyclic division algebras over fields of Brauer dimension one, Adv. Math., 366 (2020), 10pp.
• E. Brussel, K. McKinnie, E. Tengan, Cyclic length in the tame Brauer group of the function field of a p-adic curve, Amer. J. Math., 138 (2016), no.2, 251-286.
• E. Brussel, E. Tengan, Formal constructions in the Brauer group of the function field of a p-adic curve, Trans. Amer. Math. Soc. 367 (2015), no.5, 3299-3321.
• E. Brussel, E. Tengan, Tame division algebras of prime period over function fields of p-adic curves, Israel J. Math. 201 (2014), no.1, 361-371.
• E. Brussel, Fixed points of the p-adic q-bracket, Proc. Amer. Math. Soc., 140 (2012), no.5, 1501-1511.
- E. Brussel, Hasse invariant for the tame Brauer group of a higher local field.Trans.Amer. Math. Soc.(to appear), 26 pp.
- E. Brussel, Noncyclic division algebras over fields of Brauer dimension one.Adv.Math.366 (2020), 10 pp.
- E. Brussel, K. McKinnie, E. Tengan. Cyclic length in the tame Brauer group of thefunction field of ap-adic curve.Amer. J. Math.138 (2016) no. 2, 251–286.
- E. Brusseland E. Tengan. Formal constructions in the Brauer group of the functionfield of ap-adic curve.Trans. Amer. Math. Soc.367 (2015) no. 5, 3299–3321.
- E. Brusseland E. Tengan. Tame division algebras of prime period over function fieldsofp-adic curves.Israel J. Math., 201 (2014) no. 1, 361–371.
- E. Brussel. Fixed points of thep-adicq-bracket.Proc. Amer. Math. Soc., 140 (2012)no.5, 1501–1511.
- A. Asher,E. Brussel, R. Garibaldi, U. Vishne. Open problems on central simplealgebras.Transform. Groups, 16 (2011) no. 1, 219–264.
- E. Brussel, K. McKinnie, E. Tengan. Indecomposable and noncrossed product divi-sion algebras over function fields of smoothp-adic curves.Adv. in Math., 226 (2011)no. 5, 4316–4337.
- E. Brusseland E. Tengan. Bloch-Ogus sequence in degree two.Comm. Alg., 38(2010) no. 11, 4175–4187.
- E. Brussel. On Saltman’sp-adic curves papers. InQuadratic forms, linear algebraicgroups, and cohomology, volume 18 ofDev. Math., pages 13–39. Springer, New York,2010.
- E. Brussel. Alternating forms and the Brauer group of a geometric field.Trans.Amer. Math. Soc., 359 (2007) no. 7, 3025–3069.
- E. Brussel. Non-crossed products over function fields.Manuscripta Math., 107 (2002)no. 3, 343–353.
- E. Brussel. The division algebras and Brauer group of a strictly Henselian field.J.Algebra, 239 (2001) no. 1, 391–411
- E. Brussel. Noncrossed products overkp(t).Trans. Amer. Math. Soc., 353 (2001)no. 5:2115–2129.
- E. Brussel. An arithmetic obstruction to division algebra decomposability.Proc.Amer. Math. Soc., 128(8) (2000) 2281–2285.
- E. Brussel. Division algebra subfields introduced by an indeterminate.J. Algebra,188 (1997) no. 1, 216–255.
- E. Brussel. Noncrossed products overkp(t).Trans. Amer. Math. Soc., 353 (2001)no. 5:2115–2129.
- E. Brussel. An arithmetic obstruction to division algebra decomposability.Proc.Amer. Math. Soc., 128(8) (2000) 2281–2285.
- E. Brussel. Division algebra subfields introduced by an indeterminate.J. Algebra,188 (1997) no. 1, 216–255.
- E. Brussel. Wang counterexamples lead to noncrossed products.Proc. Amer. Math.,Soc. 125 (1997) no. 8, 2199–2206.
- E. Brussel. Decomposability and embeddability of discretely Henselian division alge-bras.Israel J. Math., 96 (1996) part A, 141–183.
- E. Brussel. Division algebras not embeddable in crossed products.J. Algebra, 179(1996) no. 2, 631–655.
- E. Brussel. Noncrossed products and nonabelian crossed products overQ(t)andQ((t)).Amer. J. Math., 117(2) (1995) 377–393
•